
Bond University
ePublications@bond

Information Technology papers Faculty of Business

1-1-2010

First edition Unix: Its creation and restoration
Warren Toomey
Bond University, Warren_Toomey@bond.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/infotech_pubs

Part of the Other Computer Sciences Commons

This Journal Article is brought to you by the Faculty of Business at ePublications@bond. It has been accepted for inclusion in Information Technology
papers by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository Coordinator.

Recommended Citation
Warren Toomey. (2010) "First edition Unix: Its creation and restoration" IEEE Annals of the history of
computing, 32 (3), 74-82.

http://epublications.bond.edu.au/infotech_pubs/173

http://epublications.bond.edu.au?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/business?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au

First Edition Unix:
Its Creation and Restoration

Warren Toomey
Bond University

Until recently, the earliest versions of the Unix operating system
were believed to have been lost completely. In 2008, however, a
restoration team from the Unix Heritage Society completed an
effort to resurrect and restore the first edition Unix to a running and
usable state from a newly discovered listing of the system’s assembly
source code.

The Unix operating system is arguably one of
the most influential OSs in computing.
Designed and implemented by a small
group of researchers at AT&T’s Bell Laborato-
ries, Unix has since been modified and
extended by thousands of individuals and
companies. Commercialized in the 1980s
by AT&T as the product System V, Unix
spawned a multitude of derivative systems1

including Solaris from Sun Microsystems,
AIX from IBM, and most recently OS X
from Apple. Although Unix itself was a pro-
prietary system, its ease of modification com-
bined with a user culture of self-help enabled
programmers from the University of Califor-
nia, Berkeley, to produce the BSD derivative.2

By replacing the proprietary Unix code in the
1980s and 1990s, BSD took Unix and its cul-
ture into the realm of open source.3 Unix’s
design and implementation has also heavily
influenced the creation of Linux, the most
prolific open source system to date.4

Until recently, the earliest versions of the
Unix operating system were believed to
have been lost completely. In 2008, a restora-
tion team from the Unix Heritage Society
(TUHS) completed an effort to resurrect and
restore the first edition Unix to a running
and usable state from a newly discovered list-
ing of the system’s assembly source code.
This article describes the evolution and fea-
tures of that first edition as well as the techni-
cal and philosophical issues the project faced
while restoring the software.

The creation of Unix
The catalyst for the creation of Unix was

the withdrawal of AT&T’s Bell Laboratories
from the Multics project in 1969.5 Multics

was started in 1964 as a collaboration be-
tween MIT, General Electric, and AT&T’s
Bell Laboratories to build on the new concept
of time sharing, pioneered by such systems
as the Compatible Time-Sharing System
(CTSS),6 and to create a large centralized
computing utility.7 Multics also advanced
many other architectural features such as vir-
tual memory, memory-mapped file access,
multiprocessor support, and an implementa-
tion in a high-level language (PL/I).8 For var-
ious reasons, by the end of 1968, the project
was under financial pressure and came close
to cancellation. Although AT&T had origi-
nally joined the project to develop a system
for their in-house computing needs,9 the
company eventually withdrew from the trou-
bled venture in April 1969.

Bell Labs had invested heavily in Multics
with the purchase of a GE 645 machine in
1965 and with several researchers dedicated
to the project including Ken Thompson,
Dennis Ritchie, Joseph Ossanna, Stu Feld-
man, Doug McIlroy, and Bob Morris.7 The
cancellation of Bell Labs’ involvement had
two effects: management was reluctant to
fund further OS research, and the researchers
were left without an interactive time-sharing
system. As one of the Bell Labs researchers
noted, ‘‘The toy had gone . . . There was a
clear lack of momentum.’’10

The loss of Multics, however, did not stop
all OS research at Bell Labs. Thompson in
particular was still keen to create a useful
development environment, and after the
cancellation, he worked with Ritchie and
Rudd Canaday on the file-system research
that Thompson had started on Multics.11 To
continue their research, Thompson, Ritchie,

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 74

74 IEEE Annals of the History of Computing 1058-6180/10/$26.00 �c 2010 IEEEPublished by the IEEE Computer Society

and Ossanna lobbied management for the
purchase of a DEC PDP-10 and, later, an
SDS Sigma 7, but these proposals were turned
down.5 In the summer of 1969, the research-
ers turned to a cast-off PDP-7 to implement
their ideas. Thompson ‘‘allocated a week
each to the operating system, the shell, the
editor, and the assembler, to reproduce
itself.’’11

The new system borrowed several ideas
from the researchers’ experience with Mul-
tics, including

� a tree-structured file system;
� a separate, identifiable program to do

command interpretation—the name for
the program, the shell, was borrowed
from Multics;

� no predefined file structure, except that of
an array of bytes;

� text files consisting of sequences of char-
acters separated by new lines;

� the semantics of I/O operations (read and
write) as referring to a file handle, a buffer,
and a count, thus hiding the underlying
disk blocks.7

But as Ritchie noted,

We were a bit oppressed by the big system
mentality. Ken wanted to do something sim-
ple . . . so Unix wasn’t quite a reaction against
Multics, it was more a combination of these
things. Multics colored the Unix approach,
but didn’t dominate it one way or the other,
towards an anti-Multics system, or a copy on
the cheap.7

Multics was not the only system to influ-
ence the new OS research at Bell Labs. As
an undergraduate at the University of
California, Berkeley, Thompson had been
exposed to the Berkeley Timesharing Sys-
tem,12 from which the team borrowed the
concept of per-process execution.

The PDP-7 was useful in the short term,
but it was on loan, ‘‘was already obsolete,
and its successors in the same line offered
little of interest.’’5 In 1970, the team sub-
mitted a new proposal for the purchase
a PDP-11, ostensibly for in-house text-
processing use and not for OS research; the
proposal was also ‘‘an order of magnitude
less than what we had previously asked.’’5

Management accepted the proposal, and a
PDP-11/20 (the first model in the PDP-11
family) arrived in mid-1970, although the
machine’s disks did not arrive until Decem-
ber 1970.

PDP-7 Unix and the arrival of the PDP-11/20
By the time the PDP-11/20 arrived, Unix

on the PDP-7 was self-hosting and provided
many of the constructs and features that
still exist on today’s Unix systems. (The
term Unix was coined in 1970, most likely
by Brian Kernighan.) The file system pro-
vided directories and files, and file metadata
was kept separate from the file’s data in an
array of information nodes (i-nodes), with
the exception of file names. The latter were
stored in the directory structure, along with
the index numbers of the corresponding
i-nodes. In this early stage of development,
path names did not yet exist; file names
were taken relative to the current directory.
To mitigate the lack of path names, the sys-
tem provided hard links, whereby a file
could have multiple names in various direc-
tories, all of equal importance.5

Although the file system from 1970 bears
similarity to current Unix file systems, the
process control mechanism underwent sig-
nificant evolution. In the earliest PDP-7 sys-
tem, only one process was in memory at
any time; all other processes were swapped
to disk. On each command received by
the shell interpreter, the shell exited and
replaced itself (as a process) with the
requested command. When the command
exited, the OS reloaded the shell to obtain
the next user’s command. Despite the primi-
tive mechanism, the system was able to sup-
port I/O redirection where the I/O of the
executed command comes from or is sent
to files instead of the terminal; the shell sim-
ply disconnected the terminal and opened
the appropriate files before replacing itself
with the requested command.5

The PDP-7 Unix had borrowed the open/
close/read/write I/O semantics from Multics,
but the Unix I/O redirection was a vast sim-
plification over the Multics model:5

Where under Unix we might say ls > xx to
get a listing of the names of files in xx, on
Multics the notation was

iocall attach user_output file xx

list

iocall attach user_output syn user_i/o

Another I/O advance that Unix brought
was device abstraction, which made devices
appear to be ordinary files and hence amena-
ble to the same open/close/read/write I/O
operations. The kernel had a hard-coded
map of i-node numbers to specific devices.
That is, an I/O operation (such as a read,

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 75

July–September 2010 75

write, or seek) to a file with an i-node number
in the map caused a corresponding I/O
operation on the raw device. Seeks on block-
structured devices, however, were performed
on block number instead of byte offset, as
would have been the case with ordinary files.

The early Unix process-control mechanism
then evolved into the framework normally
associated with Unix—that of fork() and
exec()—which was influenced by the Berke-
ley Timesharing System on the SDS 940 com-
puter, not Multics. Thompson noted,

We stole per-process execution [from the
Berkeley Timesharing System]. You know: cre-
ate a process, execute the command. . . . Mul-
tics wanted to do it, but it was so expensive
creating a process that it ended up creating a
few processes and then using them and put-
ting them back on the shelf, then picking
them up and reinitializing them. So, they
never really created a process for command
because it was just too expensive.11

During a fork()operation, a clone of the
current running process is made, distin-
guished from the original process by its pro-
cess ID. To accommodate the fork() system
call, the PDP-7 system’s process table size
was increased, and a fork() system call was
added that copied an image of the running
process to swap, with appropriate modifica-
tions to the process table.5 This let the PDP-7
Unix run processes detached from the key-
board and made shell scripting possible
because the shell no longer had to exit to
start a new process.

The arrival of the PDP-11/20 with 24
Kbytes of memory helped to overcome the
constraints of the PDP-7 (only 8,192 words
of 18-bit core memory). The nascent Unix
system was ported from the PDP-7 assembly
language to the PDP-11 assembly language.
And to satisfy the original funding proposal,
the roff text processing system was transliter-
ated from the PDP-7 version, which itself
had been derived from Jerome Saltzer’s runoff
program on CTSS.13 The system gained use-
ful path names for files, and the process-
control mechanism was completed with the
exec() and wait() system calls. By mid-
1971, Unix on the PDP-11/20 was supporting
three typists from AT&T’s internal patent de-
partment, which used the roff processing sys-
tem to edit and format patent applications.5

Unix programmer’s manual, first edition
In its earliest days, Unix was a continually

evolving system; if you were not one of the

researchers developing the system, you
often had to ask how to use it.14 Doug
McIlroy insisted that the team document
the system’s operation with a programmer’s
manual:

[McIlroy] had a lot to do specifically with the
manual. . . . That he insisted on a high stan-
dard in the manual meant that he insisted
there was a high standard in every one of
the programs that was documented. . . . The
work that had gone into producing the man-
ual had involved re-writing all sorts of pro-
grams in order that they should meet the
same high standard. And then added to all
of that, it was probably the first manual that
ever had a section with bugs in it. That’s a
level of honesty you don’t find. It wasn’t
that they documented the bugs but were too
lazy to fix them. They fixed a lot of bugs—but
some of them weren’t so easy to fix, or there
were uncertainties as to what they would
do—so they documented that. I think a level
of intellectual honesty was present in that
activity that was rare.10

The early Unix releases were dated by the
release of a new user manual. McIlroy noted
that

Cleaning up something up so you can talk
about it is really quite typical of Unix. Every
time another edition of the manual would
be made, there would be a flurry of activity.
When you wrote down the uglies, we’d
say, ‘‘We can’t put this in print.’’ [We had
to t]ake features out, or put features in, in
order to make them easier to talk about.15

The first edition of the Unix programmer’s
manual documents the system as it stood in
November 1971. From the user’s perspective,
the system provided a hierarchical file system
with directories, subdirectories, and files with
up to six-character names and up to 64
Kbytes in size. It supported 16 processes, al-
though only one running process was in
memory at a time; all other processes were
on the swap device. Many of the available
applications would be recognizable to cur-
rent Unix users:

ar, as, cal, cat, chmod, chown, cmp, cp, date,
dc, df, du, echo, ed, find, ld, ln, login, ls, mail,
mesg, mkdir, mv, nm, od, pr, rm, rmdir, roff,
sh, size, sort, strip, su, sum, tty, wc, who, write

Other applications included games such as
blackjack, chess, and tic-tac-toe. For the sys-
tem administrator, there were tools to
dump and restore disk images to DECtape,

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 76

First Edition Unix: Its Creation and Restoration

76 IEEE Annals of the History of Computing

to read and write paper tapes, and to create,
check, mount, and unmount file systems on
removable RK03 disk packs.

The only editor available in 1971 was the
‘‘ed’’ editor, which is still the only editor
guaranteed to be present on all Unix systems.
In 1976, Kernighan and Plauger wrote,

The earliest traceable version of the editor pre-
sented here is TECO, written for the first PDP-1
timesharing system at MIT [by Dan Murphy].
It was subsequently implemented on the
SDS-940 as the ‘‘quick editor’’ QED by L. P.
Deutsch and B. W. Lampson; see ‘‘An on-
line editor,’’ CACM December, 1967. K. L.
Thompson adapted QED for CTSS on the
IBM 7090 at MIT, and later D. M. Ritchie
wrote a version for the GE-635 (now HIS-
6070) at Bell Labs. The latest version is ed, a
simplified form of QED for the PDP-11, writ-
ten by Ritchie and Thompson.16

From a programmer’s perspective, the sys-
tem offered an interactive, multiuser, pre-
emptive multitasking environment with a
process address space of 8 Kbytes (16 Kbytes
were reserved for the kernel). Several lan-
guages were available, including Basic, For-
tran, shell scripting, assembly language, and
B, a descendant of the Basic Combined Pro-
gramming Language (BCPL) that ultimately
evolved into the C language.17

The first edition Unix kernel provided the
applications programmer with 34 system
calls. It is a testament to the system’s design
that nearly all these systems calls are still
available (and used heavily) in modern
Unix systems nearly four decades later,
including open(), close(), read(), write(),
fork(), exec(), exit(), and wait(). In par-
ticular, 24 of the system calls from the first
edition Unix appear with the same system
call number in current versions of the
Linux kernel. The initial API design for
the Unix kernel has well and truly stood
the test of time.

Internally, the first edition Unix kernel
consisted of approximately 4,200 lines of
PDP-11 assembly code. In his 1972 study of
the kernel, T.R. Bashkow noted that ‘‘it has
been mentioned parenthetically that Unix
is not very modular.’’1 Kernel modularity
would come in stages, first with the rewrite
of the kernel into the more portable C lan-
guage in 1974 and then with some signifi-
cant redesign that produced the seventh
edition Unix system in 1979.

Although modern Unix users would find
the first edition of Unix familiar, there

For its time, the first

edition Unix OS

provided a remarkably

powerful development

milieu.

were some differences they would find either
confusing or irritating. For example, while
the system distinguishes between users, and
files have separate read/write permissions
for the file’s owner and for the other system
users, the concept of user groups did not
yet exist. Although Unix supported the I/O
redirection concept, several tools such as
sort still required explicitly named input
and output files. The shell supported the pat-
tern-matching metacharacters ? and *, but it
used an external program called glob to per-
form the pattern matching.

The Unix kernel was itself divided into
two sections: cold and warm Unix kernels.
Depending on the setting of the console
switches at boot time, cold Unix would
boot and initialize the RF-11 drum device
with a minimal root file system, including
the init program, a shell, and the required de-
vice files. Alternatively, warm Unix would
boot and bring the system up into multiuser
mode. And because the PDP-11/20 provided
no memory protection against kernel corrup-
tion by the running process, it was consid-
ered a courtesy for a programmer to yell
‘‘a.out?’’—the name of the Unix assembler’s
default output file—before running a new
executable for the first time. This gave the
other users a chance to save any files they
were editing.18

For its time, the first edition Unix OS pro-
vided a remarkably powerful development
milieu. With a kernel weighing in at 4,200
lines of assembly code and occupying only
16 Kbytes of main memory, Unix could sup-
port half a dozen simultaneous users, giving
them an interactive editing, typesetting,
and programming environment. The pro-
grammer had access to several programming
languages and a set of well-designed system
calls; the latter provided elegant file I/O se-
mantics (including I/O redirection and access
to devices) and a flexible process manage-
ment model.

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 77

July–September 2010 77

Restoring the first edition Unix
Unix’s history stretches back nearly

40 years to its initial design in 1969. This
time span has lead to the loss of many of
the artifacts, documentation, and memories
from the early eras of Unix development
and use. Fortunately, there have been several
efforts to capture and document Unix’s his-
tory.5,7,19–21 In 1995, the TUHS (originally
named the PDP-11 Unix Preservation Soci-
ety) was founded with a charter to preserve,
maintain, and restore historical and non-
mainstream Unix systems. TUHS has been
successful in unearthing artifacts from
many important historical Unix systems,
including system and application source
code, system and application executables,
user manuals and documentation, and
images of populated file systems.

It had been assumed that the earliest
documented version of Unix from 1971,
named after the first edition of the pro-
grammer’s manual, had vanished forever.
However, a printed listing of the assembly
language source code to the first edition
Unix kernel was unearthed in 2006. After
much effort, the earliest documented Unix
system has been made to run again.

Issues in restoring the software

Most programming practitioners are
aware of the concept of bit rot, whimsically
defined by the New Hacker’s Dictionary as a
‘‘hypothetical disease, the existence of
which has been deduced from the observa-
tion that unused programs or features will
often stop working after sufficient time has
passed, even if ‘nothing has changed.’’’20

And yet, if the software has not changed
and exists in pristine form on some medium,
then what causes the decay?

Bit rot is not a function of the software,
rather it is a function of the change in the soft-
ware’s environment. Software does not exist in
vacuo. For it to execute, software requires

� hardware on which to execute it, or a suit-
able hardware simulation;

� documentation describing how to install,
configure, and run the software;

� ancillary files required for the software to
run (such as configuration, database,
input files); and

� if the software is in source form, tools that
can reassemble or recompile the source
into executable form.

The last requirement necessitates some
amount of recursion—that is, the tools to

reassemble or recompile software are them-
selves pieces of software, and require their
own hardware, documentation, ancillary
files, and recompilation tools.

Restoration of legacy software to working
order therefore depends on the restoration
of the environment in which the soft-
ware executed. In many cases, a complete res-
toration of either or both is impossible,
which raises several issues:

� Should bugs or faults found in the leg-
acy software be fixed, or should the envi-
ronment be modified to work around
the problem?

� If the software is incomplete, is it accept-
able to write new components in order
to complete it?

� Similarly, if the environment is incom-
plete, is it acceptable to rebuild the miss-
ing pieces?

� Even if the software is intact, is it accept-
able to use non-contemporaneous tools
such as a modern assembler or cross-
compiler to reconstruct the executable
from the historical source code?

The effort to restore the source code of the
first edition Unix kernel faced by all these
issues and many others specific to the soft-
ware and its environment.

Restoring the kernel

In 2006, Al Kossow from the Computer
History Museum unearthed and scanned a
document by T.R. Bashkow titled ‘‘Study of
Unix,’’ dated September 1972.23 The docu-
ment covers ‘‘the structure, functional com-
ponents and internal operation of the
system.’’ The study also includes what
appeared to be a complete listing of an as-
sembly version of the Unix kernel. A second
document was also found that appeared to
be the handwritten notes made by J. DeFelice
in preparation of Bashkow’s study.24 Dates
within the latter document indicate that
the analysis of the Unix kernel began in Jan-
uary 1972, implying that the kernel being
studied was the first edition.

While the paper listing of the first edition
Unix kernel (and its analysis) was interesting
in its own right, its discovery lead to the inev-
itable question: Can the kernel be restored to
working order? There were several factors
that suggested that the kernel’s environment
could be restored, including a full copy of the
programmer’s manual,25 the SIMH simulator
for the PDP-11/20,26 a number of userland

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 78

First Edition Unix: Its Creation and Restoration

78 IEEE Annals of the History of Computing

executables that date from mid-1972, and
fragments of assembly source for the userland
executables. (Userland refers to the system soft-
ware that does not execute in kernel mode.)

On initial reflection, three main hurdles
appeared to stand in the way of the restoration:

� there was no suitable Unix assembler to
recreate the kernel executable,

� there was no extant file-system image or
tool to create a file system, and

� no boot chain existed to load a kernel exe-
cutable into the PDP-11/20’s memory and
prepare the hardware for the kernel’s
operation.

For these reasons, the restoration effort was
abandoned. In April 2008, however, new
courage was found and the kernel’s restora-
tion began in earnest.

Initially, a team of approximately 10 peo-
ple undertook the task of scanning the
paper document with OCR software to
convert it into machine-readable format,
including the arduous task of visually
inspecting the output to correct mistakes.
This revealed a few handwritten comments
on the paper listing that contradicted the
source code comments and did not inspire
confidence in the venture’s success. As one
of the team commented, ‘‘I have already
noticed quite a few errors in the listing, so
it’s not clear that the [listing] was some-
thing that actually ran, or whether it had
been retyped by somebody.’’

With the kernel’s source code in machine-
readable form and verified, the search for an
assembler began. The seventh edition Unix
assembler was known to work, but it was
a PDP-11 executable; fortunately an existing
PDP-11 userland emulator, Apout, allowed
the assembler to run on top of current plat-
forms. The assembler did not, however, pro-
duce executables with the a.out structure
that the early kernel required. This was
solved by a slight restructuring of the initial
kernel code and with a tool to post-process
the assembler’s output.

Analysis of the kernel listing and the pro-
grammer’s manual indicated that first edi-
tion Unix required a PDP-11/20 with 24
Kbytes of core, RF-11 and RK03 disks, up to
eight teletypes on a DC-11 interface, and a
TC-11 DECtape device. The SIMH simulator
was configured to provide this hardware
environment. Following the successful as-
sembly of the kernel into an executable bi-
nary, the next problem was to recreate the

boot sequence. In the long term, a full
boot chain needed to be rewritten from
scratch, but first the SIMH simulator was
commanded to load the kernel into the ap-
propriate memory locations, initialize a few
registers, and begin execution at the octal
address 0400.

Executing the kernel’s first instruc-
tions revealed further problems. The kernel
required the PDP-11/20 to contain a numeri-
cal coprocessor known as a KE11A, which
SIMH did not simulate. Restoration halted
while KE11A support was added to SIMH,
using the original PDP-11/20 processor man-
ual.27 With a working KE11A, the kernel ran
into an infinite loop; a decrement instruc-
tion, missing from the paper listing, was
intuited and added. This permitted the ker-
nel, in cold Unix mode, to write what
appeared to be a minimal file system onto
the RF-11 device, containing a number of de-
vice files, the init program, and the command
shell. Two more errors in the kernel source
were fixed, allowing the kernel, in warm
Unix mode, to run the init program, output
a login prompt, and invoke a shell on suc-
cessful login of the root user.

Technically, the kernel restoration was a
success, but with no applications the execut-
ing system was unusable. It was possible, but
not certain, that the Unix userland execut-
ables from mid-1972 would run on top of
the first edition kernel. Using the existing
minimal file system and the programmer’s
manual, a standalone program was written
to create and populate a file-system image
with the executables. Inspection of the exe-
cutables also revealed that some of them
adhered to the a.out structure used in the
second edition Unix, dated June 1972. It
was decided to modify the first edition
kernel to support the newer a.out structure.
With the populated file system and later
a.out support, the restored Unix system
was again usable, with nearly all the docu-
mented system tools, text editor and docu-
ment processing tools, and programming
languages.

Two important system tools were still
missing, however. One was the mkfs tool
to build new file systems from within the
running first edition kernel; the external
file-system creation tool was able to fill
this deficiency. The second missing tool
was the mount command needed to attach
the file system on the RK03 disk, which con-
tained the users’ home directories. The solu-
tion to the latter was to modify the init

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 79

July–September 2010 79

program to add a call to the mount system
call to attach the RK03 file system at boot
time. A proper mount command would be
trivial to recreate, but the mkfs command
less so.

The first edition Unix system was now
running in single-user mode, but attempts
to configure the system to enable multiple
user logins resulted in the system hanging
at boot time. Again, a deficiency was
found in the SIMH simulator; it did not
have support for the DC-11 serial interface
device. Support for the DC-11 device was
added to SIMH, using the 1972 PDP-11
peripherals handbook,28 and the first edi-
tion Unix was able to run again in multiuser
mode. The kernel restoration was essen-
tially complete.

The first edition Unix did not contain a C
compiler, but by the second edition in June
1972, the system contained a compiler that
recognized an adolescent form of the C lan-
guage.7 The collection of mid-1972 execut-
ables contained C compiler binaries, and
elsewhere Dennis Ritchie had unearthed
their source code. The first edition kernel
had already been modified to recognize the
binaries’ a.out structure, but the kernel only
provided executables with 8 Kbytes of
address space and the C compiler required
16 Kbytes.

At this stage, the restoration team debated
whether to modify the first edition kernel to
allow the second edition C compiler to run.
One argument held that, in doing so, the ker-
nel would no longer be a first edition Unix.
An opposing argument held that the system
had already been modified to run executables
later than the first edition and so it was al-
ready a hybrid system. Pragmatism eventu-
ally won the day, and the kernel and file
system were modified to provide a 16-Kbyte
process address space and 16-Kbyte swap
areas on the disk. With these modifications,
the Unix system was able to run the C com-
piler, and the C compiler was able to recom-
pile itself.

Two final tasks in the kernel restoration
were left. One was the reconstruction of
the boot chain. Although not technically
necessary, the boot chain was an integral
part of the first edition system; it has been
recreated and is now a standard part of the
restored system. The second task, now com-
pleted, was to get the changes made to
SIMH put back into the main SIMH source
tree to make them available to other SIMH
users.

While restoring the first edition Unix, the
team chose a pragmatic approach. Specifi-
cally, it addressed the issues regarding soft-
ware restoration that I raised in the previous
section as follows:

� Bugs and faults in the original software
should be fixed, as long as the changes
are well documented. The restoration
effort faced errors and omissions in the
kernel listing, which suggests that these
occurred during the preparation of
the kernel’s study. In the restoration,
text documents were kept that accurately
reflect each of the pages of the kernel list-
ing in Bashkow’s study. They were then
transformed into the 11 documented
source files that contain the kernel source
code. Finally, these kernel files had
patches applied to them to fix any errors
and modify the kernel to support later
a.out executables and the C compiler.
Therefore, there is a clear separation
between the code in the paper listing
and the code that produces a running
system.

� It was deemed acceptable to write new
components to complete the Unix restora-
tion; in particular, the code for the
system’s boot sequence was rewritten,
and the init program was extended to
mount the RK03 file system.

� The Unix restoration would not have been
successful without the addition of KE11A
and DC-11 support to the SIMH simula-
tor and the construction of a tool to create
and populate first edition file systems. The
team deemed it acceptable to (re)build
components to complete the software
environment.

� The team was stymied with the lack of a
first edition assembler to recreate the ker-
nel executable from the kernel source
code. If the goal was to restore the kernel
to a running state, then there was no
choice but to use a later assembler. Origi-
nally, the team used the assembler from
the seventh edition Unix to build the ker-
nel. With the second edition assembler
now working, it can rebuild the first edi-
tion kernel, making the use of this assem-
bler more palatable than the seventh
edition assembler.

The Unix restoration effort has produced a
number of tools to assemble the kernel
source, create suitable file-system images,
build and configure a suitable PDP-11/20

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 80

First Edition Unix: Its Creation and Restoration

80 IEEE Annals of the History of Computing

simulator, and provide an automated work-
flow such that other people can recreate a
working first edition Unix system. The kernel
listing from Bashkow’s study has been con-
verted into machine-readable form verbatim,
and the changes required to transform the
listing into working kernel source are well-
documented and kept separate from the orig-
inal listing. Interested reader can find the
results of the restoration online at http://
unix-jun72.googlecode.com.

Although the Unix restoration effort faced
a significant amount of work and many hur-
dles, it should be noted that good fortune
and luck smiled upon the project. The task
could never have been achieved without
the preservation of the earliest Unix
documentation, the discovery of userland
executables from mid-1972, or the efforts to
preserve and restore other editions of the
Unix operating system.29

Observations
Restoring the first edition Unix to working

order revealed aspects of the system that were
not readily apparent from either the histori-
cal literature or a reading of the assembly
source code.

The first edition Unix was known to
support multiple users concurrently on
the one machine—for example, ‘‘we
supported three typists from the Patent
department’’5—but the exact number of sup-
ported users was unknown. The system resto-
ration revealed that Unix supported up to
nine concurrent users on the PDP-11/20,
although the limit of 16 processes in the sys-
tem at any time would have severely
impeded those nine users’ ability to perform
useful work.

Internally, the first edition Unix sup-
ported uppercase and lowercase ASCII char-
acters, and all command names were
lowercase. The terminals used to interface
to the system, however, were uppercase-
only Teletype ASR-33s. The terminal driver
in the kernel had code to convert uppercase
letters entered by the user into lowercase let-
ters. Upon output, the terminal driver code
inserted delays to ensure that no more than
10 characters per second were delivered to
the ASR-33s, ensuring that output was not
lost due to mechanical delays. Both the
input translation and the output delays
were removed in the restoration to make
the system more acceptable to current users,
but the patch is easily reversed to return the
system to its authentic state.

The first edition’s hardware platform, the
PDP-11/20, did not provide hardware for
memory management nor memory protec-
tion; the kernel was loaded into memory at
a fixed physical address, and the running
process was kept at a fixed physical address
adjacent to the kernel. Although the sys-
tem’s architectural features (the file system
and process management) were previously
documented, the system restoration revealed
that the designers had chosen to use a true
TRAP-based system call mechanism as
opposed to subroutine jumps via a fixed-
location dispatch table. In a private email,
Ritchie notes that ‘‘a clear system versus
user distinction was another of the things
that was absorbed, not only from Multics
but also from CTSS and the Berkeley SDS
940 system . . . It seemed only natural to do
things this way.’’

Finally, the restoration demonstrates con-
clusively that, as early as 1971, Unix pro-
vided a comfortable and powerful time-
sharing environment for text processing
with a line-based editor and the sophisticated
roff text processor, and with development
tools for several programming languages.
The system is responsive and immediate, in
contrast to contemporary batch systems.
The command-line shell and the toolbox
approach that this system introduced re-
mains a core user interface metaphor in
Unix and Linux systems after four decades
of development.

Conclusion
From the beginning, the Unix operating

system combined a set of simple and ele-
gant components into a sophisticated envi-
ronment for both users and developers.
Nearly four decades later, these compo-
nents are still the core of all Unix and
Unix-derived systems: multitasking via pro-
cesses, a single hierarchical file system, sim-
ple and flexible I/O redirection, device
abstraction, byte-oriented files, and a com-
mand shell.

The first edition Unix, documented by the
1971 programmer’s manual and arriving just
a year after Unix was conceived, shows both
a remarkable maturity of design and an econ-
omy of code embodying this design. Its redis-
covery as a code listing in Bashkow’s review
of the early Unix kernel lets us examine the
system’s intricacies, but only in the form of
a taxidermy exhibit. With a great deal of ef-
fort and fortune, this code listing has been
restored to working order, returning the

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 81

July–September 2010 81

first edition Unix to a working artifact of
computing history.

Acknowledgments

I thank all the members of the Unix restora-
tion project including Johan Beisser, Tim
Bradshaw, Ralph Logan, Doug Merritt,
James Markevitch, Brad Parker, and most par-
ticularly Tim Newsham.

References
1. Eric Lévénez, ‘‘Unix History Timeline,’’ 2008;

http://www.levenez.com/unix/.

2. K. McKusick et al., The Design and Implementa-

tion of the 4.4 BSD Operating System, Addison-

Wesley, 1996.

3. M. K. McKusick, Open Sources: Voices from the

Open Source Revolution, O’Reilly, 1999, chap. 3.

4. L. Torvalds, Open Sources: Voices from the Open

Source Revolution, O’Reilly, 1999, chap. 7.

5. D.M. Ritchie, ‘‘The Evolution of the Unix Time-

Sharing System,’’ BSTJ, vol. 63, no. 8, 1984,

pp. 1577–1594.

6. F.J. Corbatò, M.M. Daggett, and R.C. Daley,

‘‘An Experimental Time-Sharing System,’’ Proc.

Spring Joint Computer Conf., ACM Press, 1962,

pp. 335–344.

7. P.H. Salus, A Quarter Century of Unix, Addison-

Wesley, 1994.

8. F.J. Corbatò and V.A. Vyssotsky, ‘‘Introduction

and Overview of the Multics System,’’ IEEE

Annals of the History of Computing, vol. 14,

no. 2, 1992, pp. 12–13.

9. N. Peirce, ‘‘Putting Unix in Perspective: An In-

terview with Victor Vyssotsky,’’ Unix Rev., vol. 3,

no. 1, 1985, pp. 58–70, 102–106.

10. M. Mahoney, ‘‘Interview with A.G. (Sandy)

Fraser,’’ Unix Oral History Project, 1989; http://

www.princeton.edu/~hos/mike/transcripts/

fraser.htm.

11. M. Mahoney, ‘‘Interview with Ken Thompson,’’

Unix Oral History Project, 1989; http://www.

princeton.edu/~hos/mike/transcripts/thompson.

htm.

12. B.W. Lampson, W.W. Lichtenberger, and M.W.

Pirtle, ‘‘A User Machine in a Time-Sharing Sys-

tem,’’ Proc. IEEE, vol. 54, Dec. 1966.

13. J.H. Saltzer, TYPSET and RUNOFF: Memorandum-

editor and type-out Commands, tech. report

MAC-M-193, MIT Computation Center, 1964.

14. M. Mahoney, ‘‘Interview with Joseph H. Con-

don,’’ Unix Oral History Project, 1989; http://

www.princeton.edu/~hos/mike/transcripts/

condon.htm.

15. M. Mahoney, ‘‘Interview with D. McIlroy,’’

Unix Oral History Project, 1989; http://

www.princeton.edu/~hos/mike/transcripts/

mcilroy.htm.

16. B. Kernighan and P.J. Plauger, Software Tools,

Addison-Wesley, 1976.

17. D.M. Ritchie, ‘‘The Development of the C Lan-

guage,’’ Proc. 2nd History of Programming Lan-

guages Conf., ACM Press, 1993, pp. 671–698.

18. D.M. Ritchie, ‘‘Odd Comments and Strange

Doings in Unix,’’ 2002; http://cm.belllabs.com/

cm/cs/who/dmr/odd.html.

19. M. Hauben and R. Hauben, Netizens: On the

History and Impact of Usenet and the Internet,

IEEE CS Press, 1997.

20. M. Mahoney, Unix Oral History Project, 1989;

http://www.princeton.edu/~mike/expotape.htm.

21. D. Ritchie and K. Thompson, ‘‘The Unix Time-

Sharing System,’’ Comm. ACM, vol. 17, no. 7,

1974, pp. 365–375.

22. E.S. Raymond, The New Hacker’s Dictionary, MIT

Press, 1996.

23. T.R. Bashkow, ‘‘A Study of the Unix

Operating System,’’ Sep 1972; http://

www.bitsavers.org/pdf/bellLabs/unix/

PreliminaryUnixImplementationDocument_

Jun72.pdf.

24. J. De Felice, ‘‘Unix Kernel Routine Descriptions,’’

Apr 1972; http://bitsavers.org/pdf/bellLabs/unix/

Kernel_Subroutine_Descriptions_Mar72.pdf.

25. K. Thompson and D.M. Ritchie, Unix Pro-

grammer’s Manual, Nov. 1971; http://bitsavers.

org/pdf/bellLabs/unix/Unix_ProgrammersManual_

Nov71.pdf.

26. M. Burnett and R. Supnik, ‘‘Preserving Comput-

ing’s Past: Restoration and Simulation,’’ Digital

Technical J., 1996, pp. 23–38.

27. Digital Equipment, ‘‘PDP-11/20 Processor Hand-

book,’’ 1971; http://bitsavers.org/pdf/dec/pdp11/

handbooks/PDP1120_Handbook_1972.pdf.

28. Digital Equipment, ‘‘PDP-11 Peripherals Hand-

book,’’ 1972; http://www.bitsavers.org/pdf/

dec/pdp11/handbooks/PDP11_PeripheralsHbk_

1972.pdf.

29. W. Toomey, ‘‘Saving Unix from /dev/null,’’

Proc. AUUG Open Source Conf., AUUG, 1999.

Warren Toomey is an assis-

tant professor in the School of

IT at Bond University, where

he researches and lectures in

programming, networks, oper-

ating systems, and computer

security. Toomey has a PhD

in network performance from

the University of New South Wales, Australia.

Contact him at wtoomey@staff.bond.edu.au.

[3B2-14] man2010030074.3d 30/7/010 15:31 Page 82

First Edition Unix: Its Creation and Restoration

82 IEEE Annals of the History of Computing

	Bond University
	ePublications@bond
	1-1-2010

	First edition Unix: Its creation and restoration
	Warren Toomey
	Recommended Citation

	man2010030074 74..82

